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Homework #8 
Unit 5 – Regression and Correlation (3 of 3) 

Practice Problems 
Solutions 

 
 
Before you begin.  Download from the course website 
hersdata_small.xlsx 
 
 
Description of Dataset 
 
Source 
Hulley et al (1998)  Randomized trial of estrogen plus progestin for secondary prevention of heart disease in 
postmenopausal women.  The Heart and Estrogen/progestin Replacement Study.  Journal of the American Medical Association, 
280(7), 605-613 

	

The Heart and Estrogen/progestin Replacement Study (HERS) was a randomized clinical trial of hormone therapy 
(estrogen plus progestin) for the reduction of cardiovascular disease risk in post-menopausal women with established 
coronary disease.  Study participants were n=2,763 women who were:  (1) post-menopausal  (2) with coronary disease; and 
(3) with an intact uterus.   
 
The data set for this homework is a simple random sample of n=1000.    A subset of the variables are considered: 
 
Data dictionary/Codebook (Partial) 

Variable Label Type Codings 
age Age, years numeric Continuous,  range,  [ 45:79 ] 
BMI Body Mass index (kg/m2) numeric Continuous,  range,  [ 15.21:54.13 ]  
glucose Fasting glucose (mg/dL) numeric Continuous, range, [ 29:298 ] 
LDL LDL cholesterol (mg/dL) numeric Continuous, range, [ 44.4:393.4 ] 
drinkany Any current alcohol use numeric 1 = yes  

0 = no 
exercise Exercise at least 3x/week numeric 1 = yes  

0 = no 
HT Randomization numeric 1 = hormone therapy  

0 = placebo 
physact Comparative (“compared to other 

women your age”) physical activity 
Numeric 1 = much less active 

2 = somewhat less active 
3 = about as active 
4 = somewhat more active 
5 = much more active 

statins Statin use Numeric 1 = yes 
0 = no 

diabetes Diabetes Numeric 1 = yes 
0 = no 
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Before you begin. 
The following exercises are an extension of your work in homework #7.   Thus, they are not an illustration of an entire 
regression analysis, beginning with data exploration followed by a series of model estimation followed by 
diagnostics.  Rather, the exercises here are focused on regression diagnostics only.  

 
 
 
Preliminaries 
Using your imported hersdata_small data, create a new dataframe called ready that you will use for multiple 
predictor regression.   

 
import source data 
library(readxl) 
source <- read_excel("hersdata_small.xlsx") 

 
create data ready for analysis 
library(tidyverse) 
 
ready <- source %>% 
         filter(diabetes==0) %>% 
         select(id, glucose,age,BMI,drinkany) %>% 
         mutate(drinkanyf = factor(drinkany, 
                                levels=c(0,1), 
                                labels=c("0 = no", "1 = yes"))) %>% 
         na.omit() 
          
ready <- as.data.frame(ready) 
glimpse(ready) 

## Rows: 748 
## Columns: 6 
## $ id        <dbl> 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22,… 
## $ glucose   <dbl> 115, 96, 109, 108, 111, 90, 90, 108, 107, 80, 90, 92, 94, 10… 
## $ age       <dbl> 76, 62, 54, 58, 69, 70, 63, 64, 66, 65, 71, 72, 76, 73, 65, … 
## $ BMI       <dbl> 21.68, 26.93, 38.14, 33.70, 26.20, 26.84, 33.31, 22.42, 27.2… 
## $ drinkany  <dbl> 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, … 
## $ drinkanyf <fct> 1 = yes, 0 = no, 1 = yes, 0 = no, 0 = no, 0 = no, 1 = yes, 1… 

 
 
#1 
Using as your dependent variable Y=glucose, fit the following 3 predictor model: 

 

 
Check:  You should get the following prediction equation. 
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import source data 
library(readxl) 
source <- read_excel("hersdata_small.xlsx") 

 
create data ready for analysis 
library(tidyverse) 
 
ready <- source %>% 
         filter(diabetes==0) %>% 
         select(id, glucose,age,BMI,drinkany) %>% 
         mutate(drinkanyf = factor(drinkany, 
                                levels=c(0,1), 
                                labels=c("0 = no", "1 = yes"))) %>% 
         na.omit() 
          
ready <- as.data.frame(ready) 
glimpse(ready) 

## Rows: 748 
## Columns: 6 
## $ id        <dbl> 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22,… 
## $ glucose   <dbl> 115, 96, 109, 108, 111, 90, 90, 108, 107, 80, 90, 92, 94, 10… 
## $ age       <dbl> 76, 62, 54, 58, 69, 70, 63, 64, 66, 65, 71, 72, 76, 73, 65, … 
## $ BMI       <dbl> 21.68, 26.93, 38.14, 33.70, 26.20, 26.84, 33.31, 22.42, 27.2… 
## $ drinkany  <dbl> 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, … 
## $ drinkanyf <fct> 1 = yes, 0 = no, 1 = yes, 0 = no, 0 = no, 0 = no, 1 = yes, 1… 
 
 
 
Q1. fit model. show. 

fit <- lm(glucose ~ age + BMI + drinkany, data=ready) 
summary(fit) 
 
##  
## Call: 
## lm(formula = glucose ~ age + BMI + drinkany, data = ready) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -24.4162  -6.3124  -0.5711   5.3248  30.9722  
## 
 
 
 
## Coefficients: 
##             Estimate Std. Error t value             Pr(>|t|)     
## (Intercept) 80.07318    4.05782  19.733 < 0.0000000000000002 *** 
## age          0.05605    0.05089   1.101                0.271     
## BMI          0.48365    0.06526   7.411    0.000000000000341 *** 
## drinkany    -0.38757    0.67637  -0.573                0.567     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 9.156 on 744 degrees of freedom 
## Multiple R-squared:  0.07063,    Adjusted R-squared:  0.06688  
## F-statistic: 18.85 on 3 and 744 DF,  p-value: 0.000000000008651 
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#2. 
In fitting normal theory regression models, the functional form we fit says that, at each level of the predictor (X), the 
distribution of the outcome Y (this is known as the conditional distribution of Y given X) is distributed Normal with means 
that lie on a line.   Create graphs to assess the linearity of Y = glucose in age and the linearity of Y=glucose in BMI.    

Q2. Regression Diagnostics, model related. Linearity. 
library(ggplot2) 
# get min and max of Y for setting a common y-axis                                     # convenient for ggplot below 
min(ready$glucose) 
## [1] 68 

max(ready$glucose) 
## [1] 125 

# linearity in age 
ggplot(data=ready) +                                                    
    aes(y=glucose) + 
    aes(x=age) +                                                  
 
    geom_smooth(method="loess", aes(color="Loess"), se=FALSE) +                        # Loess smooth w no CI 
    geom_smooth(method="lm", aes(color="Linear"), se=FALSE) +                          # linear fit w no CI 
    geom_point(size=0.5) +                                                             # X-Y scatter 
    scale_colour_manual(name="", values=c("red","blue")) +   
    scale_y_continuous(limits = c(50,150), breaks = seq(50,150, by=25))  +             # set y-axis explicitly   
    ggtitle("Linearity of y=glucose in x=age") +   
    xlab("Age, years") + 
    ylab("Glucose, mg/dL") 

 

						Interpretation:  Linearity of Y=glucose in X=age can reasonably be assumed.   

# linearity in BMI 
ggplot(data=ready) +                                                    
    aes(y=glucose) + 
    aes(x=BMI) +                                                        
     
    geom_smooth(method="loess", aes(color="Loess"), se=FALSE) +                     # Loess smooth w no CI 
    geom_smooth(method="lm", aes(color="Linear"), se=FALSE) +                       # linear fit w no CI 
    geom_point(size=0.5) +                                                          # X-Y scatter 
    scale_colour_manual(name="", values=c("red","blue")) +   
 
    scale_y_continuous(limits = c(50,150), breaks = seq(50,150, by=25))  +          # Recommended:set y-axis explicitly 
     
    ggtitle("Linearity of y=glucose in x=BMI") +   
    xlab(expression("Body Mass Index "(kg/m^2))) +    
    ylab("Glucose, mg/dL") 
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Interpretation:  Here, it is a little less clear.  Possibly, linearity of Y=glucose in X=BMI is reasonable.  However, we do see some 
curvature in the loess smooth.  But this is based on very few observations.  Stay tuned.  We’ll explore this again in a partial F test..   

 
#3. 
Another assumption of linear regression is that the distribution of the outcome Y at each level of the predictor is normal 
with constant variance..   When this assumption is met, the distribution of the residuals is distributed Normal with mean 
= 0 and constant variance.    Thus, assessment of this assumption involves examination of the residuals after fitting the 
model.    Assess the assumption of normality of the residuals.  

 
Q3. Regression diagnostics, model related. Normality 
library(car) 
library(ggplot2) 
library(gridExtra) 
 
ready$fit.resid <- resid(fit)                                         # resid(MODELOBJECT) to get residuals from fit 
 
# Normality of residuals, basic plot 
par(mfrow = c(1,2))                                                   # set graph to be 2 panes (1 row, 2 col) 
hist(ready$fit.resid,                                                 # histogram of residuals (look for normality) 
     main="Normality of Residuals", 
     xlab="Residual") 
plot(fit, which = 2)                                                  # qqplot (look for straight line) 

 

Interpretation:  Not bad.  The bell shape of the histogram is consistent with normality.   The normal QQ plot is (mostly) linear, which 
is also what we look for in assessing normality of the residuals. 	
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par(mfrow=c(1,1))                                                       # return graph setting to single panel!!!! 
 
 
# panel 1 - Normality of residuals, ggplot 
p1 <- ggplot(data=ready) + 
         aes(x=fit.resid) + 
         geom_histogram(colour="blue",  
                        aes(y=..density..)) + 
         stat_function(fun=dnorm,  
                         color="red", 
                         args=list(mean=mean(ready$fit.resid),  
                                   sd=sd(ready$fit.resid))) + 
         ggtitle("Normality of Residuals") + 
         xlab("Residual") +  
         ylab("Density") + 
         theme_bw() + 
         theme(axis.text = element_text(size = 10),  
              axis.title = element_text(size = 10), 
              plot.title = element_text(size = 12)) 
 
 
# panel 2 = quantile-quantile plot 
p2 <- ggplot(data=ready) + 
          aes(sample=fit.resid) + 
          stat_qq() +  
          geom_abline(intercept=mean(ready$fit.resid), 
                      slope = sd(ready$fit.resid)) + 
          ggtitle("Normal Q-Q Plot") + 
          theme_bw() + 
          theme(axis.text = element_text(size = 10),  
               axis.title = element_text(size = 10), 
               plot.title = element_text(size = 12)) 
 
gridExtra::grid.arrange(p1, p2, ncol=2) 

 

Interpretation:  Same.  Thiis just a prettier picture.   

# test of normality of residuals 
shapiro.test(ready$fit.resid) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  ready$fit.resid 
## W = 0.9873, p-value = 0.000004419 

Interpretation:  This is a nice example of how sample sizes that are very large (here, n=748) can produce statistical significance when, in 
reality, the data themselves do not suggest a meaningful departure from the null.   A great reminder of the importance of looking at the 
data!   
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#4. 
Next, assess constancy of variance of the residuals.  

Q4. Regression diagnostics, model related. Constant variance 
library(car) 
library(ggplot2) 
 
ready$yhat <- fitted(fit)                                                # fitted(MODELOBJECT) to get predicted values 
ready$estandard <- rstandard(fit)                                        # get standardized residuals 
 
# constancy of variance, basic plot 
plot(fit, which = 1)                                                     # which=1 plots X=predicted v Y=residual 

 

Interpretation:  For constant variance, we want to see an even band of residual scatter, centered at zero.   Looks pretty good here. 

	

	
 

# constancy of variance, using in {car} 
residualPlots(fit, ~ 1, fitted=TRUE)                       # residualPlots() will also provide a test of the null 

 

##            Test stat Pr(>|Test stat|) 
## Tukey test   -0.1537           0.8778 

Interpretation:  Do NOT reject the null hypothesis of constant variance (p-value = .88)  The picture looks similar to previous picture.  
While this procedure is convenient in providing both a graph and a statistical hypothesis test, the first picture has the advantage of 
labeling of the X and Y axes more explicitly.   
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# constancy of variance, ggplot1 
ggplot(data=ready) + 
     aes(x=yhat) + 
     aes(y=estandard) + 
   
     geom_point(size=0.5, pch=17) +                                              # pch=17 for shape (=17 for diamonds) 
     geom_hline(yintercept=0, color="black") +                                   # line at expected residual = 0 
     geom_hline(yintercept=3, linetype="dashed", color="red") +                  # line at +3 std 
     geom_hline(yintercept=-3,linetype="dashed", color="red") +                  # line at -3 std 
           
     scale_y_continuous(limits = c(-4,4), breaks = seq(-4, 4, by=1))  +          # RECOMMENDED: set y-axis explicitly 
   
     ggtitle("Constancy of Variance") + 
     xlab("Predicted") +  
     ylab("Standardized Residual") + 
     theme_bw() + 
     theme(axis.text = element_text(size = 10),  
           axis.title = element_text(size = 10), 
           plot.title = element_text(size = 12)) 

 

NOTE!  In this ggplot, I plotted the standardize residuals because I link to think in terms of Z-scores (approx).  I also provided 
reference lines at + 3 standard deviations away from the expected value of 0.   We can see that there is, really, not much of a problem.	
 

# test of constant variance (NULL: residual variance is constant) 
ncvTest(fit) 

## Non-constant Variance Score Test  
## Variance formula: ~ fitted.values  
## Chisquare = 1.832514, Df = 1, p = 0.17583 

 

Interpretation:  Do NOT reject the null hypothesis of constant variance (p-value = .18)  I’m not sure why the p-values for the 2 tests of 
non-constant variance are so different (.88 versus .18).  I’ll have to look into that.  Mercifully, the conclusion is the same. 

	

#5. 
In question 2, where you assessed normality of Y=glucose in the predictor X=BMI, the loess smoother possibly departed 
significantly from the straight line fit, and in a manner that might suggest a quadratic relationship.  Create a new predictor 
that is BMI2.   Then, perform a partial F test of the null hypothesis that, controlling for linearity in BMI, there is no 
additional statistical significance in BMI2 in explaining the variability in outcomes.   
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Q5. Partial F-test of BMI2, controlling for BMI. 
 
# Partial F for extra inclusion of BMI squared 
ready$BMIsq <- ready$BMI^2                                                      # create BMI squared 
reduced <- lm(glucose ~ age + drinkany + BMI, data=ready) 
full <- lm(glucose ~ age + drinkany + BMI + BMIsq, data=ready) 
anova(reduced,full)                                                             # partial F-test of hierarchical models 

## Analysis of Variance Table 
##  
## Model 1: glucose ~ age + drinkany + BMI 
## Model 2: glucose ~ age + drinkany + BMI + BMIsq 
##   Res.Df   RSS Df Sum of Sq      F Pr(>F) 
## 1    744 62375                            
## 2    743 62375  1  0.043192 0.0005 0.9819 

 
Interpretation:  Do NOT reject the null hypothesis that, controlling for BMI, BMI2 is statistically significant in explaining the variability 
in Y=glucose (p-value = .98).  This confirms what we suspected, given what we saw in the graph (question 2), where the number of 
observations producing a slight curvature was very small. 
 
#6. 
This exercise gives you practice exploring the issue of multicollinearity.   Multicollinearity is said to be present when the 
predictors are themselves linearly related.   While some multicollinearity might be reasonably expected, if it is too extensive, 
that is a problem because each predictor on its own possesses too little independent information for the prediction of 
outcome.  A measure of this is the variance inflation factor statistic, VIF.   Briefly, to obtain the VIF for a particular 
predictor, that predictor is regressed on all the other predictors and an R-squared is obtained.  The VIF for the predictor is 
then obtained as follows.  Values of VIF < 10 are considered acceptable (translation: no worries!): 
 

 

 
By any means you like, produce a table of VIF values for the predictors in the fitted model.   
 
Q6. Variance Inflation Factor (VIF). 
library(car)                                                                          # vif() in package {car} 
# Variance inflation factors (VIF).  Look for VIF < 10.  
vif(fit) 

##      age      BMI drinkany  
## 1.017763 1.013782 1.015087 
 

Interpretation:  All the VIF are much less than 10 which suggests that we do not need to worry about multicollinearity.	

#7 
A visual approach to exploring multicollinearity  is to produce partial regression plots, also called added variable plots.  In 
a partial regression/added variable plot,  the extra significance of a new predictor, controlling for the variables already in 
the model is examined by plotting the residuals of the new predictor on the control variables on the horizontal axis versus 
the residuals of Y on the control variables on the vertical axis.  In this way, the influence of the control variables is 
“adjusted out”.   The slope of the scatter in this plot is a visual of the adjusted slope that will be obtained for the new 
predictor upon its inclusion in the model.  Nice! 

Q7. Partial Regression/Added variable Plot 
library(car)                                                                       # avPlots in {car} 
# Partial Regression/Added variables plots                                                                       . 
avPlots(fit,  
        id=FALSE,                                                           # suppress id's of extreme residuals 
        pch=17,                                                             # pch= for plotting character (17=diamond) 
        cex=0.5,                                                            # cex= for point size 
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        col.lines="red",                                                    # col.lines= for color of lines 
        main="Partial Regression/Added Variable Plots", 
        layout=c(1,3))                                                      # c(#rows, # columns), here 1 row, 3 cols 

 

Interpretation:  These pictures suggest that, after controlling for other predictors in the model:  (1) age is linearly related to glucose; (2) BMI is 
linearly related to glucose;  but that (3) current alcohol use (yes/no) is not associated with glucose.	

	

#8. 
Another issue in variable selection is the possibility of model misspecification which occurs if the predictors are not 
modeled correctly (e.g., linearity in the predictor is insufficient) or important predictors are missing.  The Ramsey test tests 
the null hypothesis the curent model is adequately specified.  By any means you like, perform the Ramsey test.	
# Test for omitted variables (NULL: model is adequately specified) 
library(lmtest)                                                                 # resettest() in package {lmtest}      
                                                                                  
resettest(fit, power=2, type="regressor")  

##  
##  RESET test 
##  
## data:  fit 
## RESET = 0.18324, df1 = 3, df2 = 741, p-value = 0.9078 

Interpretation:  Do NOT reject the null hypothesis of adequate model specification (p-value = .91).  We have no statistically significant 
evidence that the model is misspecified (either with respect to its included predictors or with respect to omitting important predictors).	
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#9. 
Outliers are observations that are unusual in the Y-sense.  They may or may not influence the fitted model.  But it’s good 
to take a look.  The Bonferroni test examines the largest studentized residual.  For this particular studentized residual it 
peforms a t-test of the null hypothesis that it is not statistically significantly different from the other studentized residuals. 
By any means you like, assess the fitted model with respect to outliers. 

Q9. Regression diagnostics, case related. Outliers 
library(car)                                                                    # outlierTest() in package {car} 
 
# outlierTest() for detecting observations with large standardized residuals  
outlierTest(fit) 

## No Studentized residuals with Bonferroni p < 0.05 
## Largest |rstudent|: 
##     rstudent unadjusted p-value Bonferroni p 
## 698  3.41559         0.00067102      0.50193 

Interpretation:  Take another look at the ggplot on page 7 (X=predicted outcome, Y=studentized residual).  The graph shows 3 
observations (or so) with studentized residuals more than 3 standard deviations from their expected value of 0.   Sure enough, here we 
see that the largest is equal to 3.42.  In a t-test that does NOT adjust for multiple comparisons, the p-value is highly statistically 
significant (p-value=.0007).  After adjustment for multiple comparisons, it is no longer statistically significant.  In my opinion, the graph 
on page 7 is more useful than this outlier test. 
 
#10. 
High leverage observations are observations that are unusual in the X-sense.  They may or may not influence the fitted 
model.  By any means you like, assess the fitted model with respect to leverage. 

Q10. Regression diagnostics, case related. Leverage 
library(car)                                                  # influenceIndexPlot() in package {car} 
 
# leverage, basic plot 
plot(fit, which = 5)                                          # which=5 X=leverage v Y=standardized residual 

 

Interpretation:  The usefulness of this graph is that it shows you the observations that are unusual in BOTH the X-sense (leverage) and 
the  Y-sense (studentized residual).  Keep in mind, however, this may or may not mean that the point is influential in determining the 
estimates of the betas.  Still, it’s good to take a look. 
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# leverage, fancy 
influenceIndexPlot(fit, vars=c("hat"),                                  # choose: "Studentized","Bonf","hat", "Cook" 
                   id=FALSE, 
                   main="Case Analysis:  Leverage Values") 

 
Interpretation:  Take a look at the Y-axis.   The values of the leverage are all much much less than 1.  We have nothing to worry about 
vis a vis leverage!	

#11. 
Influential observations do impact the fit!  Their inclusion in the model changes the estimated betas.  There are several 
approaches to detect influential observations.  Among the most commonly used is the calculation of Cook’s distance.  
Briefly, the Cook’s distance is a summary measure of the discrepancy in the estimation betas in two models, one with the 
observation included and the other with the observation not included.   A plot of study id versus Cook’s distance makes 
their detection easy; simply look for spikes!  Several thresholds/cutoffs have been suggested for the identification of 
influential observations.   My suggested guidelines are these:   (1) look at the plot first; where you see spikes, these 
observations may be influential (take care, however, to notice the range of Cook’s distances by examining the y-axis scale 
provided); (2) A Cook’s distance > 1 is worth exploring further; (2) A Cook’s distance > .5 is of mild interest. 
 
# cook's distance, basic plot 
plot(fit, which = 4)                # which=4 X=observation # v Y=Cook distance 

 

 
Interpretation:  AGAIN!  Take a look at the Y-axis.   The values of the Cook’s distances are all much much less than 1.  We have 
nothing to worry about vis a vis influence!	
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# cook's distance, fancy 
influenceIndexPlot(fit, vars=c("Cook"),                           # choose: "Studentized","Bonf","hat", "Cook" 
                   id=FALSE, 
                   main="Case Analysis:  Cook's Distance") 

 

Interpretation:  Of the two graphs of Cook’s distances, I prefer the first because the axes are more clearly labeled. 
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Good to know – Single commands for bundles of diagnostics. 
There exist several commands which will produce several diagnostic plots all at once.  How convenient is that!.  Here are 
some examples.  You’re welcome.  

plot( ).  No package necessary 
  
Command Plot Produced 

plot(fit, which=1) X = fitted value  Y = residual 
plot(fit, which=2) X = theoretical normal quantile  Y = studentized residual 
plot(fit, which=3) X = fitted value Y = square root (standardized residual) 
plot(fit, which=4) X = observation number Y = Cook’s Distance 
plot(fit, which=5) X = leverage Y = standardized residual 
plot(fit, which=6) X = leverage Y = Cook’s Distance 

plot(fit) Default is four plots:  which=1, which=2, which=3, and which=5 
  

Bundles of diagnostics with single commands 
library(car) 
library(ggplot2) 
library(ggfortify) 
 
# Using base package 
plot(fit)                                                 # Plot(fit) produces four plots:  which=1, 2, 3, and 5       
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residualPlots( ) in package {car} 
This command also provides, for each predictor X, a t-test of NULL:  “no curvature” quadratic X2 is not statistically 
significant.  It also provides the Tukey test of NULL: “the model is additive” 

  
Command Plots Produced 

residualPlots(fit) For each predictor:   X = predictor  Y = residual 
And also:  X = fitted  Y = residual 
 

residualPlots(fit, ~X1) For single predictor of interest:   X = predictor  Y = residual 
And also:  X = fitted  Y = residual 
 

residualPlots(fit, ~1) X = fitted  Y = residual  ONLY 
  

	
# Using package {car}.                                                   # cex=.5 makes point size smaller 
residualPlots(fit, cex=.5, fitted=TRUE)                                  # all predictors 

 

##            Test stat Pr(>|Test stat|) 
## age          -0.7414           0.4587 
## BMI          -0.0227           0.9819 
## drinkany      0.8134           0.4163 
## Tukey test   -0.1537           0.8778 

 

 

 

 
 
 
 
 



BIOSTATS 640 – Fall 2023                     Unit 5.  Regression and Correlation (3 of 3)                  Solutions - R                                  
	

.../sol_regression 3 of 3.docx                                                                                                                  Page 16 of 18 

residualPlots(fit, ~BMI, cex=.5, fitted=TRUE)                            # just one predictor 

 

##            Test stat Pr(>|Test stat|) 
## BMI          -0.0227           0.9819 
## Tukey test   -0.1537           0.8778 

residualPlots(fit, ~1, cex=.5, fitted=TRUE)                              # fitted v residuals only 

 

##            Test stat Pr(>|Test stat|) 
## Tukey test   -0.1537           0.8778 

 
 
 
 
 
 
 
 
 



BIOSTATS 640 – Fall 2023                     Unit 5.  Regression and Correlation (3 of 3)                  Solutions - R                                  
	

.../sol_regression 3 of 3.docx                                                                                                                  Page 17 of 18 

autoplot( ) in package {ggpfortify}.   
To be safe you might need to have library(ggplot2) 

  
Command Plot Produced 

which=1 X = fitted value  Y = residual 
which=2 X = theoretical normal quantile  Y = studentized residual 
which=3 X = fitted value Y = square root (standardized residual) 
which=4 X = observation number Y = Cook’s Distance 
which=5 X = leverage Y = standardized residual 
which=6 X = leverage Y = Cook’s Distance 

  

	
# Using package {ggfortify} 
autoplot(fit, which = 1:6, ncol = 2, label.size = 1, 
         colour = "steelblue")  

 

 
 
 
 
 
 
 
 
 
 
 
 



BIOSTATS 640 – Fall 2023                     Unit 5.  Regression and Correlation (3 of 3)                  Solutions - R                                  
	

.../sol_regression 3 of 3.docx                                                                                                                  Page 18 of 18 

Last but not least!  
How to Plot Predicted Means from a Fit, holding other covariates at their means 
 

REPORTING Plot marginal prediction v age (other vars set to means) 
library(ggplot2) 
 
#1. Predicted mean Y v X=age with other vars set to their means 
#1a.  Data for plot 
newage <- data.frame(age=c(45,55,65,75),                                              # X = values of age  
                      BMI=rep(mean(ready$BMI),4),                                     # BMI at its mean 
                      drinkany=rep(mean(ready$drinkany),4))                           # drinkany at its mean 
yhat1 <- predict(fit, newdata=newage, interval="confidence")                          # Y = predicted fit w CI 
age <- newage$age                                                                     # To obtain variable name 
plotdata <- cbind(age, yhat1)                                                         # cbind() will yield dataframe 
 
# Get names of columns/variables in plotdata for use in ggplot 
# names(plotdata)                                                                     # Names are fit, lwr, upr 
 
#1b.  Plot. 
ggplot(data=plotdata) +                                                               # data=DATAFRAME, required     
  aes(x=age, y=fit) +                                              
  geom_point() +                                                                      # Points are predicted means 
  stat_smooth(method = lm, size=0.5, color="black") +  
     geom_line(aes(y = lwr), color = "blue", linetype = "dashed") +  # lower CI 
     geom_line(aes(y = upr), color = "blue", linetype = "dashed") +  # upper CI 
   
   ggtitle("Predicted Mean Glucose (95% CI) by Age")  +  
          xlab("Age, years") +                                      
          ylab("Glucose, mg/dL")  + 
          labs(caption = "Covariates bmi and drinkany at their means") +                # add a footnote! 
          theme(plot.caption = element_text(hjust = 0, face = "italic"))                # position footnote lower left 

 


